The CGRP Receptor in Migraine

WHAT IS MIGRAINE?

- Migraine is a complex neurological disease associated with recurrent and often debilitating headaches that are accompanied by sensory alterations¹
- The trigeminovascular system, which relays head pain signals to the brain, plays a key role in migraine pathophysiology and has components in the periphery (ie, outside the BBB) as well as in the CNS (ie, inside the BBB)¹⁻⁴
- Migraine is also associated with changes in neural networks within the CNS, including the cerebral cortex, brainstem, hypothalamus, and thalamus¹

Migraine may occur as a result of a dysfunctional trigeminovascular system⁵

WHAT IS CGRP?

- 37-amino acid, multifunctional neuropeptide¹
- Produced in central and peripheral neurons¹
- Known to increase during migraine³
- Thought to play a role in migraine pathophysiology¹⁻³

WHAT IS THE CGRP RECEPTOR?

The CGRP-R is a membrane bound, G-protein coupled receptor that comprises two subunits: CLR and RAMP-1¹

CGRP-Rs are found in key areas for migraine:²⁻⁴

- Trigeminal ganglion
- Dura vasculature
- ► Brainstem, eg, TNC
- ► Brain, eg, thalamus

CGRP binds to the CGRP-R and receptors for two CGRP-related peptides: adrenomedullin and amylin^{1,6}

CGRP binding affinity to related receptors^{1,6}

Only the CGRP-R has been implicated in migraine pathophysiology¹

WHAT IS THE ROLE OF THE CGRP-R IN MIGRAINE?

- Peripheral release of CGRP from trigeminal nerve endings is thought to trigger multiple responses induced by CGRP-R binding, which eventually lead to the sensitization of nociceptor trigeminal neurons^{1,3}
- The stimulation of peripheral nociceptive trigeminal neurons is hypothesized to relay the migraine pain signal through the brainstem into the brain, ultimately leading to the experience of migraine pain⁷
- Central effects of CGRP may involve pain transmission through sensitization and activation of central processes (eg, feedback from a sensitized brain)¹

Clinical evidence to support the role of CGRP in migraine pathophysiology:

- ► Elevated levels of peripheral CGRP have been observed following a migraine attack^{1,8}
- IV infusion of CGRP was found to induce moderate-to-severe headaches in patients with migraine⁹⁻¹¹

Activation of CGRP-R in the trigeminovascular system plays a critical role in peripheral and central events that ultimately lead to the experience of migraine pain^{1,3,7}

TRIGEMINOVASCULAR SYSTEM^{1-4,12}

CGRP receptors are found in several sites in the trigeminovascular system^{3,4}

Summary:

- CGRP is a neuropeptide produced in peripheral and central neurons^{1,3}
- CGRP binds to the CGRP-R, located at several sites in the trigeminal pathway^{1,3}
- CGRP-R signaling within the trigeminovascular system is a key contributor to migraine pathophysiology^{1,3,7,13}
- Research continues to reveal the complex pathophysiology underlying migraine, and the role of CGRP in both the periphery and CNS^{1,3}

Abbreviations:

BBB, blood-brain barrier; CGRP, Calcitonin Gene-Related Peptide; CGRP-R, Calcitonin Gene-Related Peptide receptor; CLR, calcitonin-like receptor; CNS, central nervous system; IV, intravenous; RAMP-1, receptor activity-modifying protein; TNC, trigeminal nucleus caudalis.

References:

 Russo AF. Annu Rev Pharmacol Toxicol. 2015;55:533–552.
Edvinsson L. Brit J Clin Pharmacol. 2015; 80:193–199.
Raddant AC and Russo AF. Expert Rev Mol Med. 2011;13:e36.
Eftekhari S and Edvinsson L. Ther Adv Neurol Disord. 2010;3:369–378.
Noseda R and Burstein R_Pain_2013: 1-A-1, 7-A-3.
Walker CS and Hay DL. Brit J Clin Pharmacol. 2013;170:1293–1307.
Silberstein S, et al. Headache. 2015;55:1171–1182.
Goadsby PJ, et al. Ann Neurol. 1990;28:183–187.
Asghar MS, et al. Ann Neurol. 2011;69:635–645.
Lassen LH, et al. Cephalalgia 2002;22:54–61.
Hansen JM, et al. Cephalalgia. 2011;30:1179–1186.
Karsan N and Goadsby PJ. Curr Neurol Neurosci Rep. 2015;15:25.
Russell FA, et al. Physiol Rev. 2014; 94:1099–1142.

